4th POSTGRADUATE CLL Conference

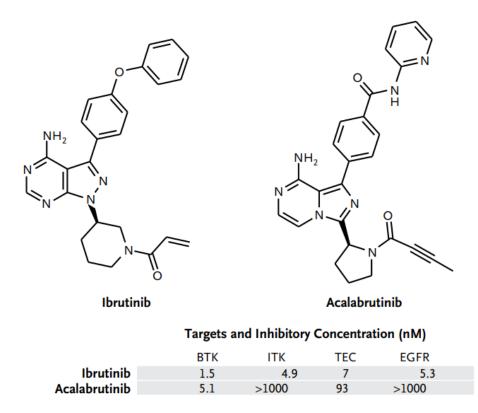
Bologna November 13-14 2023

Royal Hotel Carlton

President: Pier Luigi Zinzani

4th Postgraduate CLL Conference Bologna

Acalabrutinib

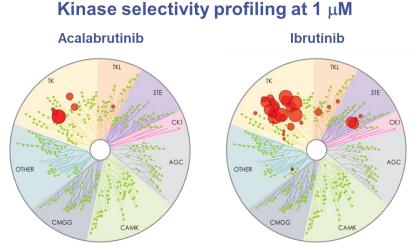

Matthew S. Davids, MD, MMSc

Clinical Research Director | Division of Lymphoma | Dana-Farber Cancer Institute Associate Professor of Medicine | Harvard Medical School 13 November, 2023

Disclosures of Matthew S. Davids, MD, MMSc

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
AbbVie	✓		✓			✓	
Adaptive Biotechnologies			✓			✓	
Ascentage Pharma	✓		✓				
AstraZeneca	✓		✓			✓	
BeiGene			✓			✓	
Bristol-Myers Squibb			✓			✓	
Eli Lilly			✓			✓	
Genentech	✓		✓			✓	
Genmab			✓				
Janssen			✓			✓	
Merck			✓			✓	
Novartis	✓						
Nuvlaent			✓				
Research to Practice							🗸 (Honoraria)
Secura Bio	✓		✓				
Takeda			✓			✓	
TG Therapeutics	✓		✓			✓	
Bologna, Nover Royal Hotel Carlton	mber 13-14 2023			C/HAV	M/		XII

A new generation of covalent BTKi is born


Byrd et al., NEJM, 2016

4th POSTGRADUATE

CLL Conference

Acalabrutinib

- Highly-selective, potent BTK inhibitor
- Designed to minimize off-target activity, with minimal effects on TEC, EGFR, or ITK signaling

Ki	nase Inhibition IC_{50}	(nM)
Kinase	Acalabrutinib	Ibrutinib
BTK	5.1	1.5
TEC	126	10
BMX	46	0.8
ТХК	368	2.0
ERBB2	~1000	6.4
EGFR	>1000	5.3
ITK	>1000	4.9
JAK3	>1000	32
BLK	>1000	0.1

The size of the red circle is proportional to the degree of inhibition.

• Barf T, et al. J Pharmacol Exp Ther. 2017.

Acalabrutinib: Pharmacokinetics and Pharmacodynamics

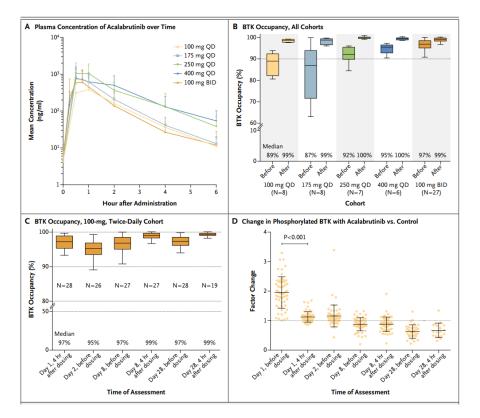
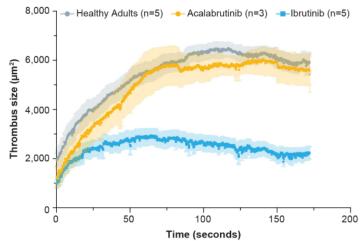
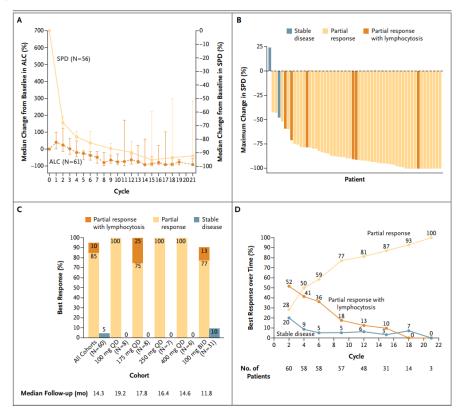




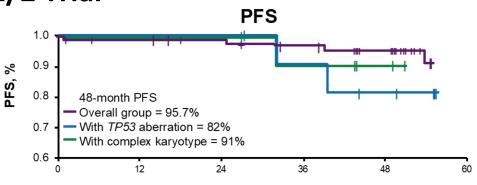
Figure S4. In Vivo Thrombosis Formation Model

Platelets from patients treated with ibrutinib 420 mg once per day (QD) (n=5) or acalabrutinib 100 mg twice per day (BID) (n=3) were evaluated for their ability to support thrombus formation in laser injured arterioles of VWF^{HA1} mice. Freshly isolated platelets from healthy volunteers (n=5) were used as non-drug treated controls. A minimum of 4 arterioles per mouse was used to assess thrombus formation for each patient/volunteer sample. Median fluorescence intensity as a function of time is provided in the figure (shading denotes standard error of the median).

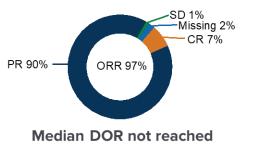
Acalabrutinib: Response

Byrd et al., NEJM, 2016

4th POSTGRADUATE CLL Conference


Acalabrutinib in TN CLL: Phase 1/2 Trial

Baseline characteristics (N = 99):


- 46% aged \geq 65 years
- 18% TP53 aberration
- 18% complex karyotype
- 66% ECOG PS = 1

AE profile by year 50 45 1 vear (N=99) 40 1-2 years (n=96) 35 2-3 years (n=93) 3-4 years (n=89) Patients (%) 30 25 20 15 10 Headache URTI Arthralgia Contusion Weight Nausea Hyperten increased

Byrd JC, et al. Blood. 2021;137:3327-3338.

Time, mo

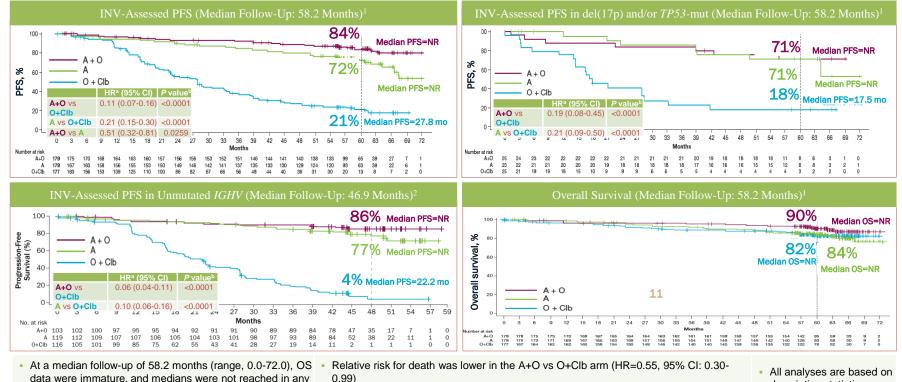
5-Year Follow-Up of ELEVATE-TN: Acalabrutinib ± Obinutuzumab vs Obinutuzumab + Chlorambucil in TN CLL – Study Design and Patient Characteristics¹⁻³

 Key Eligibility Criteria Aged ≥65 years or >18 to <65 years with comorbidities (defined as CrCl 30-69 mL/min and CIRS-G >6) 	Patient Char	acteristics	A+O (n=179)	A (n=179)	O+Clb (n=177)
 Untreated CLL requiring treatment per iwCLL 2008 criteria ECOG PS ≤2 	Median age ((range), years	70 (41-88)	70 (44-87)	71 (46-91)
No significant cardiovascular disease	ECOG PS,	0-1	169 (94.4)	165 (92.2)	167 (94.4)
R Acalabrutinib + Obinutuzumab (A+O)	n (%)	2	10 (5.6)	14 (7.8)	10 (5.6)
A Acala 100 mg po bid until PD or unacceptable toxicity Obinutuzumab 6 cycles	Bulky disease ≥5 cm, n (%)		46 (25.7)	68 (38.0)	54 (30.5)
D Acalabrutinib Monotherapy (A)	Rai stage,	Ш	47 (26.3)	51 (28.5)	40 (22.6)
Acala 100 mg po bid until PD or unacceptable toxicity	n (%)	IV	38 (21.2)	37 (20.7)	38 (21.5)
Crossover from O+Clb to A allowed after IRC-confirmed PD	Cytogenetic	del(17p)	17 (9.5)	16 (8.9)	16 (9.0)
E <u>Obinutuzumab + Chlorambucil (O+Clb)</u> D 6 cycles	s, n (%)	del(17p) and/or mutated <i>TP</i> 53	25 (14.0)	23 (12.8)	25 (14.1)
	Mutated TP5	3, n (%)	21 (11.7)	19 (10.6)	21 (11.9)
Primary endpoint: IRC-assessed PFS (A+O vs O+Clb) Secondary endpoints: IRC-assessed PFS (A vs O+Clb), INV-assessed PFS,	Unmutated /	<i>GHV</i> , n (%)	103 (57.5)	119 (66.5)	116 (65.5)
IRC- and INV-assessed ORR, TTNT, OS, uMRD, safety	Treatment or	ngoing, n (%)	116 (64.8)	107 (59.8)	0

Data cutoff: October 1, 2021.

1. Sharman JP, et al. EHA 2021. Abstract S148. 2. Sharman JP, et al. ASCO 2022. Abstract 7539. 3. Sharman JP, et al. EHA 2022. Abstract P666.

5-Year Follow-Up of ELEVATE-TN: Acalabrutinib ± Obinutuzumab vs Obinutuzumab + Chlorambucil in TN CLL – Safety^{1,2}


AEs of Clinical Interest, n (%)	A- (n=1		م (n=1)	A 179)	O+ (n=:	Clb 169)
	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3
Cardiac events	43 (24.2)	17 (9.6)	39 (21.8)	18 (10.1)	13 (7.7)	3 (1.8)
Atrial fibrillation	11 (6.2)	2 (1.1)	13 (7.3)	2 (1.1)	1 (0.6)	0
Bleeding	88 (49.4)	8 (4.5)	78 (43.6)	6 (3.4)	20 (11.8)	0
Major bleeding ^a	12 (6.7)	8 (4.5)	8 (4.5)	6 (3.4)	2 (1.2)	0
Hypertension	17 (9.6)	8 (4.5)	16 (8.9)	7 (3.9)	6 (3.6)	5 (3.0)
Infections	140 (78.7)	50 (28.1)	135 (75.4)	35 (19.6)	75 (44.4)	14 (8.3)
Secondary primary malignancies	31 (17.4)	14 (7.9)	27 (15.1)	7 (3.9)	7 (4.1)	3 (1.8)
Excluding nonmelanoma skin	17 (9.6)	12 (6.7)	13 (7.3)	5 (2.8)	3 (1.8)	2 (1.2)

^a Defined as any serious or grade ≥3 hemorrhagic event, or any grade hemorrhagic event in the central nervous system. **1.** Sharman JP, et al. ASCO 2022. Abstract 7539. **2.** Sharman JP, et al. EHA 2022. Abstract P666.

Bologna, November 13-14 2023 Royal Hotel Carlton

4th POSTGRADUATE **CLL Conference**

5-Year Follow-Up of ELEVATE-TN: Acala ± Obin vs Obin + Chl in TN CLL – PFS and OS^{1,2}

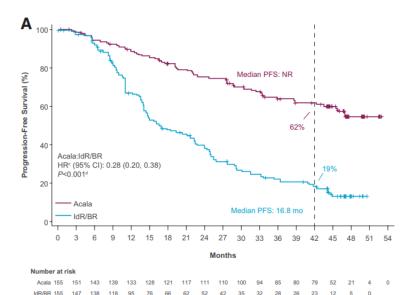
data were immature, and medians were not reached in any treatment arm

- Crossover from O+Clb to A occurred after disease progression in 72 patients (41%)

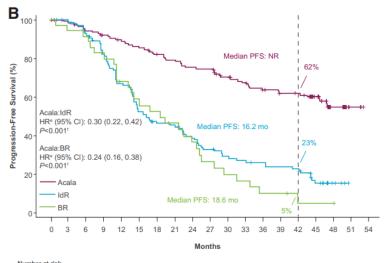
descriptive statistics

1. Sharman JP, et al. ASCO 2022. Abstract 7539. 2. Sharman JP, et al. Leukemia. 2022;36(4):1171-1175.

Acala/Obin Combo May Provide Benefits in Certain CLL Subgroups¹


• ELEVATE-TN post hoc analysis of data pooled from 376 patients with TN CLL suggests that for patients with unmutated IGHV, the A + G combination may lead to improved PFS and OS compared with those receiving A monotherapy

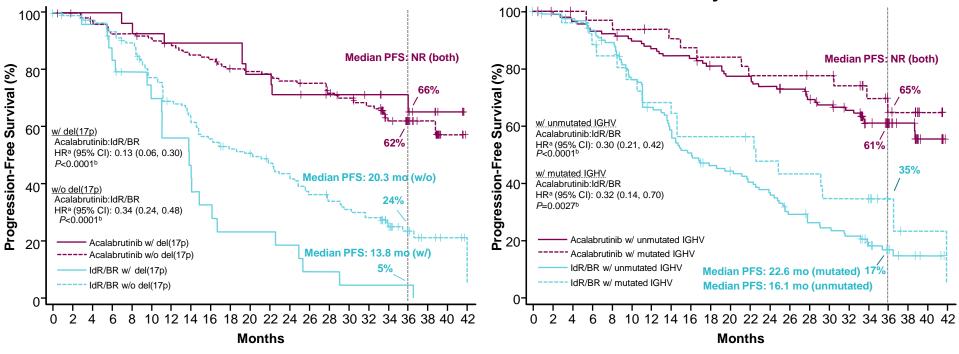
Investigator-Assessed PFS: PFS Improved With A + G Versus A in Patients With Unmutated IGHV


	No. PFS Eve	ents/Patients	Farmer A - O		Hazard Ratio (95% CI)
	A + G	A	Favors A + G	Favors A	Hazaru Kallo (95% CI)
Overall					
Primary analysis	19/112	36/118			0.51 (0.29-0.89)
Age group, y			-		
<70	10/60	15/59	_	-	0.63 (0.28-1.40)
≥70	9/52	21/59			0.45 (0.21-0.99)
Bulky disease (measurable lymph nodes), cm					
<5	8/74	18/66			0.40 (0.17-0.92)
≥5	11/38	18/51	●		0.67 (0.31-1.41)
CLL-IPI score					
0-1 (normal/low risk)					N/A
2-3 (intermediate risk)	0/8	2/6			NE (NE-NE)
4-6 (high risk)	12/85	29/94	——		0.41 (0.21-0.81)
7-10 (very high risk)	7/18	5/17		•	1.32 (0.42-4.16)
B2M at baseline, mg/L					
≤3.5	2/24	4/19	•		0.39 (0.07-2.16)
>3.5	17/87	32/98	_		0.55 (0.31-1.00)
1. Davids M et al. ASH 2022. Abstract 1815.		.01	.05 .1 .5 1	.0	1 1 111
Bologna, November 13-14 2023 Royal Hotei Carlton		K	THY ME		

ASCEND: IRC-assessed PFS was superior for Acala vs Idela-R or B-R in R/R CLL

Final PFS Analysis

PFS By Treatment Received


Number a	at risk	¢																	
Acala	155	151	143	139	133	128	121	117	111	110	100	94	85	80	79	52	21	4	0
IdR	119	114	106	90	73	57	49	48	40	34	29	27	25	23	22	11	4	0	
BR	36	33	32	28	22	19	17	14	12	8	6	5	3	3	1	1	1		

Ghia. Hemasphere. 2022. [epub]

ASCEND: Investigator-Assessed PFS in Patients with High-Risk Features

PFS by del(17p)

PFS by IGHV

Acalabrutinib resulted in similar PFS in patients with del(17p)/TP53 mutations and unmutated IGHV

4th POSTGRADUATE CLL Conference

ELEVATE-RR: Phase 3 Study of Acalabrutinib vs Ibrutinib in Patients With R/R CLL – Study Design and Patient Characteristics^{1,2}

Key Eligibility Criteria		Arm A Acalabrutinib	Patient Characteristics ²		
Previously treated CLL with del(17p)		to PD	Median age (range), years		
or del(11q)		Arm B Ibrutinib to PD	≥75 years, n (%)		
• ECOG ≤2			ECOG PS 0-1, n (%)		
N=533	Primary endp	point:	Median prior lines of therapy (range), n		
Enrolled from ² :	PFS by IRC		\geq 4 prior lines, n (%)		
 Europe (75%) United States (22%) 	 Noninferiori 250 events 	ty ^a ; tested after	del(17p), n (%)		
New Zealand and			<i>TP53</i> -mut, n (%)		
Australia (3%)	0	1. 1. <i>c</i> . b	del(11q), n (%)		
Stratification by:	Secondary e	1 - C - C - C - C - C - C - C - C - C -	Unmutated IGHV, n (%)		
 Presence of del(17p) ECOG PS (2 vs ≤1) 	 Incidence o 	f atrial fibrillation f grade ≥3 infections	Complex karyotype, n (%)		
 Number of prior therapies 	 Incidence o 	t Richter	Bully diagona (>E am) n		

- (1-3 vs ≥4)
- transformation
- OS

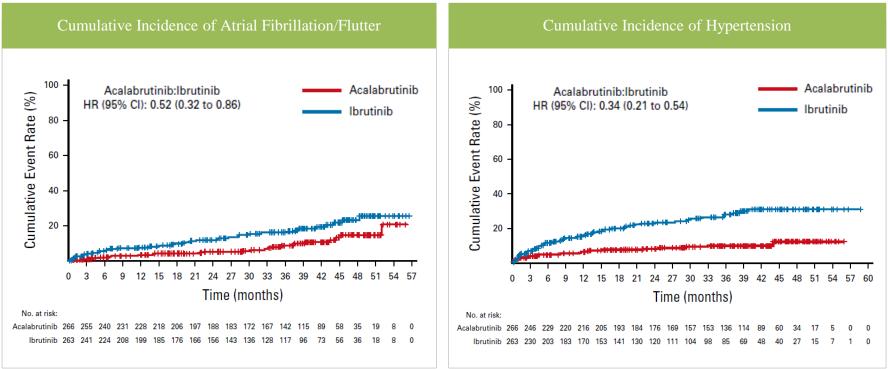
(n=268)	(n=265)		
66 (41-89)	65 (28-88)		
44 (16.4)	43 (16.2)		
247 (92.2)	243 (91.7)		
2 (1-9)	2 (1-12)		
33 (12.3)	28 (10.6)		
121 (45.1)	120 (45.3)		
100 (37.3)	112 (42.3)		
167 (62.3)	175 (66.0)		
220 (82.1)	237 (89.4)		
124 (46.3)	125 (47.2)		
128 (47.8)	136 (51.3)		
	(n=268) 66 (41-89) 44 (16.4) 247 (92.2) 2 (1-9) 33 (12.3) 121 (45.1) 100 (37.3) 167 (62.3) 220 (82.1) 124 (46.3)		

1. Hillmen P, et al. EHA 2021. Abstract S145. 2. Byrd JC, et al. J Clin Oncol. 2021;39(31):3441-3452.

ELEVATE-RR: Phase 3 Study of Acalabrutinib vs Ibrutinib in Patients with R/R CLL – Efficacy and Safety Analysis¹

10	0]+	+	the state												-				rutini	
(%) II	0-			×_	*	-	-	-7	_								lb	rutini	b	
e Surviva	0 -								+	~	-	-	****	2						
Free														-	ale.					
4-uoi	0-													T	-	1	*			
ression-l		Events, r	n (%)	Medi	an (959	% CI)	Haza	rd ratio	o (95%	CI)				T	-	-	****	E.		
Progression-I		Events, r 143 (53		-	an (959 (33.0, 3			rd ratio						t	1	1	****	6 -14	-	4
Progression 2	0		.4)	38.4		38.6)								t	-	¥	****	6 -14	<u> </u>	1
		143 (53	.4)	38.4	(33.0, 3	38.6)					, 30	33	, 36	, 39	42	45	48	51	54	-
	0	143 (53	.4)	38.4 38.4	(33.0, 3 (33.0, 4	38.6) 11.6)	1.0	10 (0.79	9, 1.27 24)		33	, 36	39	42	45	, 48	51	54	
	0 0 0 No.	143 (53 136 (51) 3	.4)	38.4 38.4	(33.0, 3 (33.0, 4	38.6) 11.6)	1.0	10 (0.79	9, 1.27 24	27		, 33 110	, 36 84	, 39 59	42	45	48	51	- † 54	4

Primary Endpoint: Noninferiority on IRC-Assessed PFS

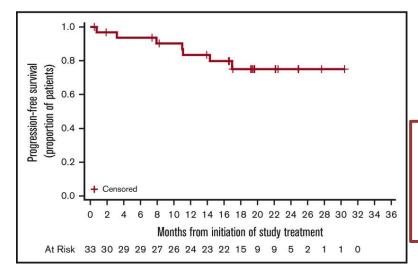

Median follow-up	Treatment ongoing	Most common reasons for discontinuation	Median treatment exposure (range)
40.9 months	46 (Acala) and 41 (Ibr)	PD (31 Acala vs 26 Ibr), AEs (15 Acala vs 22 Ibr)	38.3 mo (0.3-55.9) Acala vs 35.5 mo (0.2-57.7) lbr

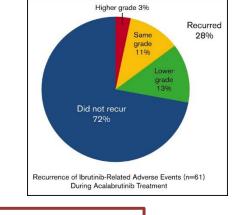
	Any	grade	Grac	le ≥3
AEs	Acala ^a	lbr ^b	Acala ^a	lbr ^b
Events of clinical interest, %				
Cardiac events	24	30	9	10
Atrial fibrillation/flutter	9	16*	5	4
Hypertension ^c	9	23*	4	9*
Bleeding events ^d	38	51*	4	5
Major bleeding eventse	5 ^f	5 ^g	4	5
Infections ^h	78	81	31	30
Selected common AEs, ⁱ %				
Diarrhea	35	46*	1	5*
Headache	35*	20	2*	0
Cough	29*	21	1	<1
Fatigue	20	17	3*	0
Arthralgia	16	23*	0	1
Back pain	8	13*	0	1
Muscle spasms	6	13*	0	1
Dyspepsia	4	12*	0	0

1. Hillmen P, et al. EHA 2021. Abstract S145..

4th POSTGRADUATE CLL Conference

ELEVATE-RR: Phase 3 Study of Acalabrutinib vs Ibrutinib in Patients With R/R CLL – Additional Safety Analyses


Byrd JC, et al. J Clin Oncol. 2021;39:3441-3452.


Acalabrutinib in Ibrutinib-Intolerant Patients

Subset analysis of patients with ibrutinib intolerance enrolled in phase 1/2 ACE-CL-001 (n = 33)

- •Median duration of prior ibrutinib, 11.6 months
- •~70% of patients remained on acalabrutinib after a median of 19 months

•3 patients had discontinued acalabrutinib due to AEs; 4 patients discontinued due to progressive disease

Median duration of response was not reached

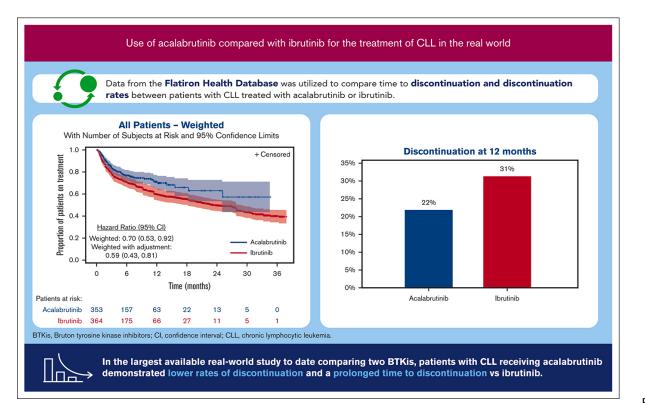
- Median PFS was not reached
- •1-year PFS was 83.4% (95% CI, 64.5%-92.7%)

Awan FT, et al. Blood. 2019;3(9):1553-1562. doi: 10.1182/bloodadvances.2018030007.

ACE-CL-208: Acalabrutinib in Patients Who Discontinued Ibrutinib Due to AEs

	N = 60	Progression-free survival
Follow-up, median (range), months	23 (<1-35)	1.0
On acalabrutinib, n (%)	37 (62)	
Discontinued acalabrutinib, n (%)		⊗ 0.6
Disease progression		
Adverse event	7 (12)	뚭 0.4
Patient withdrawal		0.2 Median PFS: Not reached
Physician decision		0.0 18-month PFS rate: 73.5% (95% CI: 59.2%-83.4%)
Death		0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Other		Number at risk Months
Deaths on study, n (%)		60 55 51 50 50 49 43 42 41 30 24 23 17 13 7 7 1

Rogers K, et al. Haematologica. 2021:106(9):2364-2373.


ACE-CL-208: Reoccurrence of Adverse Events With Acalabrutinib

			acalabrutinib	
AE	Patients who discontinued ibrutinib, n	Median time to onset on ibrutinib (range), days	Total, n	Median time to onset on acalabrutinib (range), days
Atrial fibrillation	16	88 (1-1721)	3	141 (27-311)
Diarrhea	7	26 (2-277)	5	15 (7-713)
Arthralgia	7	27 (1-956)	1	43
Rash	7	1 (1-231)	2	31 (30-32)
Bleeding	7	428 (1-1688)	5	30 (15-441)
Total	42	N/A	16	N/A

Patients with recurrent AFs on

Rogers K, et al. Haematologica. 2021:106(9):2364-2373.

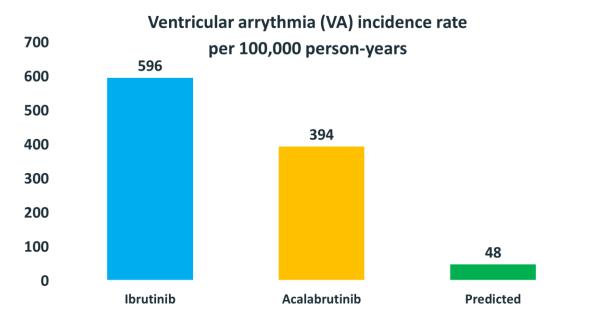
Emerging real-world data confirm improved tolerability of acalabrutinib

Roeker et al, Blood Adv, 2023

Acalabrutinib Tablet Formulation

Acalabrutinib tablets are smaller in size compared with acalabrutinib capsules, and have a film coating to improve swallowing ability¹

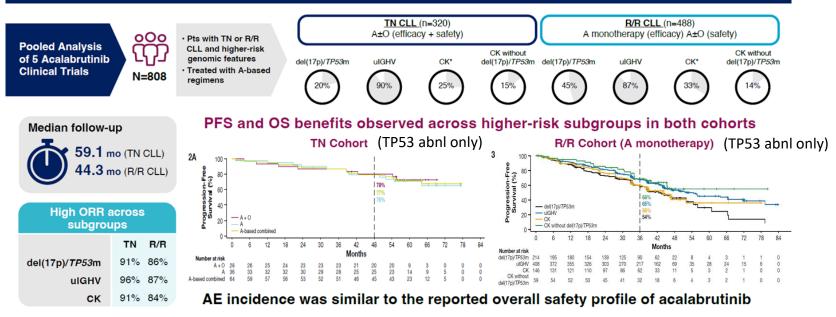
- PPI Coadministration: Acalabrutinib tablets can be taken with acid-reducing agents such as PPIs, antacids, or H2-receptor antagonists^{1,2}
- Same Efficacy and Safety Expected: The new tablet formulation has been proven to be bioequivalent to capsules¹
- Same Dosing Schedule: As with acalabrutinib 100 mg capsules, patients take one 100 mg tablet twice daily^{2,3,a}


- Same CYP3A interaction with acalabrutinib tablets and capsules:
 - <u>Strong CYP3A Inhibitors</u>: Avoid co-administration of acalabrutinib with a strong CYP3A inhibitor. If these inhibitors will be used short term, interrupt acalabrutinib. After discontinuation of strong CYP3A inhibitor for at least 24 hours, resume previous dosage of acalabrutinib
 - <u>Moderate CYP3A Inhibitors</u>: Reduce the dosage of acalabrutinib to 100 mg once daily when co-administered with a moderate CYP3A inhibitor
 - <u>Strong CYP3A Inducers</u>: Avoid co-administration of acalabrutinib with a strong CYP3A inducer. If co-administration is unavoidable, increase the dosage of acalabrutinib to 200 mg approximately every 12 hours

^a Approximately every 12 hours.²

1. Sharma S, et al. Blood. 2021;138(Suppl 1):4365. 2. Acalabrutinib tablets. Prescribing information. AstraZeneca Pharmaceuticals LP; 2022. 3. Acalabrutinib capsules. Prescribing information. AstraZeneca Pharmaceuticals LP; 2022.

Ventricular Arrhythmias With BTK Inhibitors


Monocentric retrospective study in 394 patients receiving acalabrutinib with historic ibrutinib control

Bhat SA, et al. *Blood*. 2022;140(20):2142-2145.

4th POSTGRADUATE **CLL** Conference

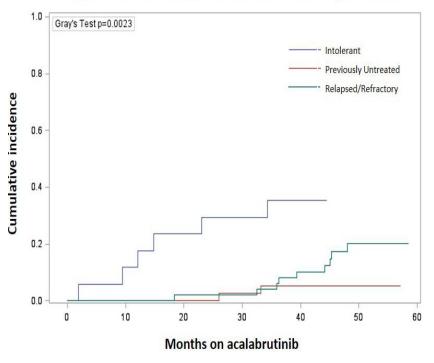
Acalabrutinib-based Regimens in Frontline or Relapsed/Refractory Higher-Risk CLL: Pooled Analysis of 5 Clinical Trials Davids MS, et al.

*CK defined as ≥3 chromosomal abnormalities with ≥1 structural abnormality excluding inversion of chromosome 9.

A acalabrutinib: AE adverse event: CK, complex karvotype; CLL, chronic hymphocytic leukemia; mo, months; NR, not reached; O, obinutuzumab; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; R/R, relapsed/refractory; TN, treatment naive; TP53m, tumor protein p53 mutation; uIGHV, unmutated immunoglobulin heavy chain variable region genes.

PFS and OS rates are high with A-based regimens in pts with higher-risk CLL

A-based regimens had a consistent tolerability profile


These data demonstrate the long-term benefit of A-based regimens in pts with CLL and higher-risk genomic features, regardless of line of therapy

Bologna, November 13-14 2023 Royal Hotel Carlton

Davids et al., in revision

Resistance to Acalabrutinib: OSU Experience

Figure 1: Cumulative Incidence of Progression

- Of 16 progressors, 11 had *BTK* C481x mut, 2 also *PLCG*2
- 103 pts were screened, 22 had mut at median 32 mos
- Median time to relapse after mut: 12 mos

Could time-limited acala decrease risk of resistance mutations?

ACTIVE, NOT RECRUITING ()

A Study on Limiting Treatment Time With <mark>Acalabrutinib</mark> Combined With <mark>Obinutuzumab</mark> in People With CLL or SLL

ClinicalTrials.gov ID 1 NCT04722172

Sponsor 🕕 Memorial Sloan Kettering Cancer Center

Information provided by (1) Memorial Sloan Kettering Cancer Center (Responsible Party)

Last Update Posted 1 2023-08-18

(Clinicaltrials.gov accessed 25 Oct 2023)

Conclusioni

- Acalabrutinib is a potent covalent BTKi with greater specificity than ibrutinib
- Robust phase 3 data support the efficacy and safety of acalabrutinib in TN and R/R CLL
- Head-to-head data confirm that acalabrutinib has comparable efficacy and improved safety compared to ibrutinib
- Acalabrutinib can be well-tolerated in patients with poor tolerance of ibrutinib
- Resistance to acalabrutinib appears to be driven by similar mutations as with ibrutinib
- Ongoing combination strategies are incorporating acalabrutinib into time-limited regimens

Bologna, November 13-14 2023 Royal Hotel Carlton